Extended domain for fifth convergence order schemes
نویسندگان
چکیده
منابع مشابه
Fifth-Order Weighted Power-ENO Schemes for Hamilton-Jacobi Equations
We design a class of Weighted Power-ENO (Essentially Non-Oscillatory) schemes to approximate the viscosity solutions of Hamilton-Jacobi (HJ) equations. The essential idea of the Power-ENO scheme is to use a class of extended limiters to replace the minmod type limiters in the classical third-order ENO schemes so as to improve resolution near kinks where the solution has discontinuous gradients....
متن کاملFifth Order Multi-moment WENO Schemes for Hyperbolic Conservation Laws
A general approach is given to extend WENO reconstructions to a class of numerical schemes that use different types of moments (i.e., multi-moments) simultaneously as the computational variables, such as point values and grid cell averages. The key is to re-map the multi-moment values to single moment values (e.g., cell average or point values), which can then be used to invoke known, standard ...
متن کاملAn Iterative Method with Fifth-Order Convergence for Nonlinear Equations
In this paper, we suggest and analyze a new four-step iterative method for solving nonlinear equations involving only first derivative of the function using a new decomposition technique which is due to Noor [11] and Noor and Noor [16]. We show that this new iterative method has fifth-order of convergence. Several numerical examples are given to illustrate the efficiency and performance of the ...
متن کاملGrid Convergence Error Analysis for Mixed-Order Numerical Schemes
New developments are presented in the area of grid convergence error analysis for mixed-order numerical schemes. A mixed-order scheme is de ned as a numerical method where the formal order of the truncation error varies either spatially, for example, at a shock wave, or for different terms in the governing equations, for example, third-order convection with second-order diffusion. The case exa...
متن کاملConvergence of Second - Order Schemes for Isentropic Gas Dynamics
Convergence of a second-order shock-capturing scheme for the system of isentropic gas dynamics with L°° initial data is established by analyzing the entropy dissipation measures. This scheme is modified from the classical MUSCL scheme to treat the vacuum problem in gas fluids and to capture local entropy near shock waves. Convergence of this scheme for the piston problem is also discussed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Cubo (Temuco)
سال: 2021
ISSN: 0719-0646
DOI: 10.4067/s0719-06462021000100097